Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Front Immunol ; 13: 985472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248786

RESUMO

Introduction: Neuroendocrine cells release Catestatin (CST) from Chromogranin A (CgA) to regulate stress responses. As regards COVID-19 patients (COVID+) requiring oxygen supply, to date nobody has studied CST as a potential mediator in the regulation of immunity. Patients & Methods: Admission plasma CST and CgA - its precursor - concentrations were measured (ELISA test) in 73 COVID+ and 27 controls. Relationships with demographics, comorbidities, disease severity and outcomes were analysed (Mann-Whitney, Spearman correlation tests, ROC curves). Results: Among COVID+, 49 required ICU-admission (COVID+ICU+) and 24 standard hospitalization (COVID+ICU-). Controls were either healthy staff (COVID-ICU-, n=11) or COVID-ICU+ patients (n=16). Median plasma CST were higher in COVID+ than in controls (1.6 [1.02; 3.79] vs 0.87 [0.59; 2.21] ng/mL, p<0.03), with no difference between COVID+ and COVID-ICU+. There was no difference between groups in either CgA or CST/CgA ratios, but these parameters were lower in healthy controls (p<0.01). CST did not correlate with either hypoxia- or usual inflammation-related parameters. In-hospital mortality was similar whether COVID+ or not, but COVID+ had longer oxygen support and more complications (p<0.03). CST concentrations and the CST/CgA ratio were associated with in-hospital mortality (p<0.01) in COVID+, whereas CgA was not. CgA correlated with care-related infections (p<0.001). Conclusion: Respiratory COVID patients release significant amounts of CST in the plasma making this protein widely available for the neural regulation of immunity. If confirmed prospectively, plasma CST will reliably help in predicting in-hospital mortality, whereas CgA will facilitate the detection of patients prone to care-related infections.


Assuntos
COVID-19 , Cromogranina A , Humanos , Morbidade , Oxigênio , Fragmentos de Peptídeos
2.
Front Immunol ; 13: 977175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090980

RESUMO

The increasing resistance to antibiotic treatments highlights the need for the development of new antimicrobial agents. Antimicrobial peptides (AMPs) have been studied to be used in clinical settings for the treatment of infections. Endogenous AMPs represent the first line defense of the innate immune system against pathogens; they also positively interfere with infection-associated inflammation. Interestingly, AMPs influence numerous biological processes, such as the regulation of the microbiota, wound healing, the induction of adaptive immunity, the regulation of inflammation, and finally express anti-cancer and cytotoxic properties. Numerous peptides identified in chromaffin secretory granules from the adrenal medulla possess antimicrobial activity: they are released by chromaffin cells during stress situations by exocytosis via the activation of the hypothalamo-pituitary axis. The objective of the present review is to develop complete informations including (i) the biological characteristics of the AMPs produced after the natural processing of chromogranins A and B, proenkephalin-A and free ubiquitin, (ii) the design of innovative materials and (iii) the involvement of these AMPs in human diseases. Some peptides are elective biomarkers for critical care medicine, may play an important role in the protection of infections (alone, or in combination with others or antibiotics), in the prevention of nosocomial infections, in the regulation of intestinal mucosal dynamics and of inflammation. They could play an important role for medical implant functionalization, such as catheters, tracheal tubes or oral surgical devices, in order to prevent infections after implantation and to promote the healing of tissues.


Assuntos
Medula Suprarrenal , Células Cromafins , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Humanos , Sistema Imunitário , Inflamação/tratamento farmacológico
3.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35216181

RESUMO

Resistance to antifungal therapy of Candida albicans and non-albicans Candida strains, frequently associated with oral candidosis, is on the rise. In this context, host-defense peptides have emerged as new promising candidates to overcome antifungal resistance. Thus, the aim of this study was to assess the effectiveness against Candida species of different Catestatin-derived peptides, as well as the combined effect with serum albumin. Among Catestatin-derived peptides, the most active against sensitive and resistant strains of C. albicans, C. tropicalis and C. glabrata was the D-isomer of Cateslytin (D-bCtl) whereas the efficiency of the L-isomer (L-bCtl) significantly decreases against C. glabrata strains. Images obtained by transmission electron microscopy clearly demonstrated fungal membrane lysis and the leakage of the intracellular material induced by the L-bCtl and D-bCtl peptides. The possible synergistic effect of albumin on Catestatin-derived peptides activity was investigated too. Our finding showed that bovine serum albumin (BSA) when combined with the L- isomer of Catestatin (L-bCts) had a synergistic effect against Candida albicans especially at low concentrations of BSA; however, no synergistic effect was detected when BSA interacted with L-bCtl, suggesting the importance of the C-terminal end of L-bCts (GPGLQL) for the interaction with BSA. In this context in vitro D-bCtl, as well as the combination of BSA with L-bCts are potential candidates for the development of new antifungal drugs for the treatment of oral candidosis due to Candida and non-Candida albicans, without detrimental side effects.


Assuntos
Candidíase Bucal/tratamento farmacológico , Cromogranina A/farmacologia , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Animais , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/metabolismo , Candidíase Bucal/metabolismo , Bovinos , Farmacorresistência Fúngica/efeitos dos fármacos , Humanos , Soroalbumina Bovina/metabolismo
4.
Sci Rep ; 11(1): 15615, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341386

RESUMO

Chromogranin A (CgA) is the precursor of several antimicrobial peptides, such as Catestatin (Cts, bovine CgA344-364), initially described as a potent inhibitor of catecholamines. This peptide displays direct antimicrobial activities and contributes to immune system regulation. The aim of the present study is to investigate a designed peptide based on Cts to fight infections against superbugs and more particularly Staphylococcus aureus. In addition to Cateslytin (Ctl, bovine CgA344-358), the active domain of Catestatin, several peptides including dimers, D-isomer and the new designed peptide DOPA-K-DOPA-K-DOPA-TLRGGE-RSMRLSFRARGYGFR (Dopa5T-Ctl) were prepared and tested. Cateslytin is resistant to bacterial degradation and does not induce bacterial resistance. The interaction of Catestatin with immune dermal cells (dendritic cells DC1a, dermal macrophages CD14 and macrophages) was analyzed by using confocal microscopy and cytokine release assay. The dimers and D-isomer of Ctl were tested against a large variety of bacteria showing the potent antibacterial activity of the D-isomer. The peptide Dopa5T-Ctl is able to induce the self-killing of S. aureus after release of Ctl by the endoprotease Glu-C produced by this pathogen. It permits localized on-demand delivery of the antimicrobial drug directly at the infectious site.


Assuntos
Anti-Infecciosos , Imunidade Inata , Peptídeos , Staphylococcus aureus , Animais , Bovinos , Humanos
5.
Int Immunopharmacol ; 94: 107487, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33636560

RESUMO

Global public health is threatened by new pathogens, antimicrobial resistant microorganisms and a rapid decline of conventional antimicrobials efficacy. Thus, numerous medical procedures become life-threating. Sepsis can lead to tissue damage such as myocardium inflammation, associated with reduction of contractility and diastolic dysfunction, which may cause death. In this perspective, growing interest and attention are paid on host defence peptides considered as new potential antimicrobials. In the present study, we investigated the physiological and biochemical properties of Cateslytin (Ctl), an endogenous antimicrobial chromogranin A-derived peptide, in H9c2 cardiomyocytes exposed to lipopolysaccharide (LPS) infection. We showed that both Ctl (L and D) enantiomers, but not their scrambled counterparts, significantly increased cardiomyocytes viability following LPS, even if L-Ctl was effective at lower concentration (1 nM) compared to D-Ctl (10 nM). L-Ctl mitigated LPS-induced LDH release and oxidative stress, as visible by a reduction of MDA and protein carbonyl groups content, and by an increase of SOD activity. Molecular docking simulations strongly suggested that L-Ctl modulates TLR4 through a direct binding to the partner protein MD-2. Molecular analyses indicated that the protection mediated by L-Ctl against LPS-evoked sepsis targeted the TLR4/ERK/JNK/p38-MAPK pathway, regulating NFkB p65, NFkB p52 and COX2 expression and repressing the mRNA expression levels of the LPS-induced proinflammatory factors IL-1ß, IL-6, TNF-α and NOS2. These findings indicate that Ctl could be considered as a possible candidate for the development of new antimicrobials strategies in the treatment of myocarditis. Interestingly, L-enantiomeric Ctl showed remarkable properties in strengthening the anti-inflammatory and anti-oxidant effects on cardiomyocytes.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Cromogranina A/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Lipopolissacarídeos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Receptor 4 Toll-Like/metabolismo
6.
Br J Clin Pharmacol ; 86(4): 825-828, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31726481

RESUMO

Pheochromocytoma crisis is an exceptional consequence of the release of storage vesicles of the adrenal medulla. It is complicated by fulminant adrenergic myocarditis. It offers a unique opportunity to detect inotropic negative factors from neuroendocrine origin. Our objectives were (a) to describe a pheochromocytoma crisis, (b) to investigate in vivo myocardial depressant activities for the N-terminal 1-76 Chromogranin A-derived peptide, vasostatin-I (VS-I). A patient with a pheochromocytoma crisis was treated, including extracorporeal membrane oxygenation, until mass resection. Plasma concentrations of VS-I were time-dependently assessed with a specific immunoassay; correlations with invasive cardiovascular parameters were investigated. Increased VS-I concentrations were observed over 7 days until tumour resection. VS-I concentrations correlated positively with Chromogranin A levels, negatively with cardiac output and left ventricular stroke work index, but not with heart rate. This case illustrates the pharmacokinetics of VS-I in a pheochromocytoma crisis. It highlights myocardial depressant activity for this peptide at high concentrations.


Assuntos
Neoplasias das Glândulas Suprarrenais , Fator Depressor Miocárdico , Glândulas Suprarrenais , Calreticulina , Cromogranina A , Humanos , Fragmentos de Peptídeos
7.
Crit Care Explor ; 1(9): e0044, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32166286

RESUMO

Care-related infections affect up to 11% of ICU patients. Running therapeutic albumin is sometimes associated to less infection: whether a specific method of its infusion is of any interest to modulate innate defense is unknown. Our objectives were: 1) to test whether the method for albumin infusion is important to prevent care-related infections and 2) to analyze in vitro the antioxidative role of albumin on host defense proteins during shock (using vasostatin-I as an example). DESIGN: In a prospective, randomized, open-label trial, shock patients were allocated to receive either continuously 4% albumin or intermittently 20% albumin, as long as they were infused with norepinephrine. A translational study including in vivo and in vitro analyses of albumin-vasostatin-I interactions is reported. SETTING: A tertiary ICU caring for 1,000 patients per year. PATIENTS: Fifty shock patients with serum albumin less than 20 g/L. INTERVENTIONS: In vivo colonization and nosocomial infections were recorded and time-dependent changes in serum albumin, chromogranin A, and vasostatin-I concentrations as well. In vitro, we studied biochemical albumin-vasostatin-I relationship using biochemical methods. MEASUREMENTS AND MAIN RESULTS: Over 18 days, we recorded a decrease in colonization (four vs 12 episodes; p = 0.035) and nosocomial infection frequency (two vs 13 episodes; p = 0.002) in patients infused continuously 4% albumin versus controls. In vitro, albumin interacts with the disulfide loop vasostatin-I (residues 17-40) and continuous 4% albumin infusion restores its oxidative status required for antimicrobial activity. CONCLUSIONS: Continuous 4% albumin is effective in reducing care-related infections in shock patients by increasing the availability of antimicrobial vasostatin-I. This might guide future care of shock patients.

8.
Vaccines (Basel) ; 6(4)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241336

RESUMO

Ulcerative colitis (UC) is characterized by aberrant regulation of tight junctions (TJ), signal transducer and activator of transcription 3 (STAT3), and interleukin (IL)-8/18, which lead to intestinal barrier defects. Catestatin (CST), an enterochromaffin-derived peptide, regulates immune communication and STAT-3 in the inflamed intestine. Here, we investigated the effects of CST during the development of inflammation using human biopsies from patients with active UC, human colonic epithelial cells (Caco2), and an experimental model of UC (dextran sulfate sodium [DSS]-colitis). In UC patients, the protein and mRNA level of CST was significantly decreased. Colonic expression of CST showed a strong positive linear relationship with TJ proteins and STAT3, and a strong negative correlation with IL-8 and IL-18. Intra-rectal administration of CST reduced the severity of experimental colitis, IL-18 colonic levels, maintained TJ proteins and enhanced the phosphorylation of STAT3. CST administration increased proliferation, viability, migration, TJ proteins, and p-STAT3 levels, and reduced IL-8 & IL-18 in LPS- & DSS-induced Caco2 cell epithelial injury, and the presence of STAT-3 inhibitor abolished the beneficial effect of CST. In inflammatory conditions, we conclude that CST could regulate intestinal mucosal dynamic via a potential STAT3-dependent pathway that needs to be further defined. Targeting CST in intestinal epithelial cells (IECs) should be a promising therapeutic approach such as when intestinal epithelial cell homeostasis is compromised in UC patients.

9.
Biomacromolecules ; 19(9): 3693-3704, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30060653

RESUMO

The oxidation of dopamine and of other catecholamines leads to the formation of conformal films on the surface of all known materials and to the formation of a precipitate in solution. In some cases, it has been shown that the addition of additives in the dopamine solution, like certain surfactants or polymers, polyelectrolytes, and certain proteins, allows to get polydopamine nanoparticles of controlled size and the concomitant decrease, in an additive/dopamine dependent manner, in film formation on the surface of the reaction beaker. However, the mechanism behind this controlled oxidation and self-assembly of catecholamines is not known. In this article, it is shown that a specific diad of amino acids in proteins, namely KE, allows for specific control in the oxidation-self-assembly of dopamine to obtain polydopamine@protein core-shell nanoparticles which are biocompatible. The interactions between dopamine and the adjacent KE amino acids potentially responsible for the size control of polydopamine aggregates was investigated by molecular dynamics simulations. The obtained core-shell nanoparticles display the biological activity of the protein used to control the self-assembly of PDA. The photon to heat conversion ability of PDA is conserved in the PDA@protein particles.


Assuntos
Indóis/química , Nanopartículas/química , Peptídeos/química , Polímeros/química , Motivos de Aminoácidos , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Melaninas/biossíntese , Camundongos , Micrococcus luteus/efeitos dos fármacos , Simulação de Dinâmica Molecular , Nanopartículas/efeitos adversos
10.
Sci Rep ; 8(1): 9235, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915284

RESUMO

The excessive use of antifungal agents, compounded by the shortage of new drugs being introduced into the market, is causing the accumulation of multi-resistance phenotypes in many fungal strains. Consequently, new alternative molecules to conventional antifungal agents are urgently needed to prevent the emergence of fungal resistance. In this context, Cateslytin (Ctl), a natural peptide derived from the processing of Chromogranin A, has already been described as an effective antimicrobial agent against several pathogens including Candida albicans. In the present study, we compared the antimicrobial activity of two conformations of Ctl, L-Ctl and D-Ctl against Candida albicans. Our results show that both D-Ctl and L-Ctl were potent and safe antifungal agents. However, in contrast to L-Ctl, D-Ctl was not degraded by proteases secreted by Candida albicans and was also stable in saliva. Using video microscopy, we also demonstrated that D-Ctl can rapidly enter C. albicans, but is unable to spread within a yeast colony unless from a mother cell to a daughter cell during cellular division. Besides, we revealed that the antifungal activity of D-Ctl could be synergized by voriconazole, an antifungal of reference in the treatment of Candida albicans related infections. In conclusion, D-Ctl can be considered as an effective, safe and stable antifungal and could be used alone or in a combination therapy with voriconazole to treat Candida albicans related diseases including oral candidosis.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase Bucal/tratamento farmacológico , Cromogranina A/farmacologia , Fragmentos de Peptídeos/farmacologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Voriconazol/farmacologia
11.
J Mol Med (Berl) ; 96(2): 183-198, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29274006

RESUMO

Chromogranin-A (CHGA) is elevated in inflammatory bowel disease (IBD), but little is known about its role in colonic inflammation. IBD is associated with impaired functions of macrophages and increased apoptosis of intestinal epithelial cells. We investigated CHGA expression in human subjects with active ulcerative colitis (UC) and the underlying mechanisms in Chga -/- mice. In UC, CHGA, classically activated macrophage (M1) markers, caspase-3, p53, and its associated genes were increased, while alternatively activated macrophage (M2) markers were decreased without changes in the extrinsic apoptotic pathway. CHGA correlated positively with M1 and the apoptotic pathway and negatively with M2. In the murine dextran sulfate sodium (DSS)-induced colitis, Chga deletion reduced the disease severity and onset, pro-inflammatory mediators, M1, and p53/caspase-3 activation, while it upregulated anti-inflammatory cytokines and M2 markers with no changes in the extrinsic apoptotic markers. Compared to Chga +/+ , M1 and p53/caspase-3 activation in Chga -/- macrophages were decreased in vitro, while M2 markers were increased. CHGA plays a critical role during colitis through the modulation of macrophage functions via the caspase-3/p53 pathway. Strategies targeting CHGA to regulate macrophage activation and apoptosis might be developed to treat UC patients. KEY MESSAGES: • Chromogranin-A (CHGA) is pro-hormone and is secreted in the gut. CHGA is elevated in colitis and is associated with the disease severity. The lack of GHGA has beneficial immunomodulatory properties during the development of intestinal inflammation. The lack of CHGA regulates the plasticity of macrophages and p53/caspase activation in colitis. Functional analysis of CHGA may lead to a novel therapy for IBD.


Assuntos
Apoptose , Cromogranina A/metabolismo , Colite/metabolismo , Macrófagos/metabolismo , Animais , Células Cultivadas , Cromogranina A/genética , Colite/induzido quimicamente , Colite/patologia , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Shock ; 49(5): 522-528, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29049134

RESUMO

In previously healthy persons suffering from acute illnesses, nosocomial infections (NIs) are frequent. Their prevalence suggests the existence of as yet unknown conditions that may promote care-related infection. This study assessed whether the measurement of plasma chromogranin A, a stress-related protein involved in innate defense, is related to NI risk, and whether any chromogranin A-derived fragment included in vasostatin-I displays immunosuppressive activities related to AP-1 or NF-kappa B downregulation. At the clinical level, trauma patients and healthy controls were recruited to be eligible. Clinical histories were recorded, and standard biological tests (including plasma chromogranin A) were performed. For 9 randomly chosen patients and 16 controls, the time-dependent concentrations of chromogranin A (CGA) were assessed twice a day over 66 h. The data show that trauma patients present a higher value of CGA concentration during 66 h in comparison with healthy controls. In addition, patients maintaining this significant increase in CGA readily develop NIs. We therefore studied the effects of chromogranin A-derived peptides on monocytes, focusing on transcription factors that play a central role in inflammation. In vitro assay demonstrated that a chromogranin A-derived fragment (CGA47-70) displays a significant inhibition of NF-kappa B and AP-1 transcriptional activities in these cells. In conclusion, the occurrence of NI in trauma patients is associated with significantly increased plasma CGA concentrations. Downregulation of the two transcription factors by CGA47-70 might induce early acquired immune defect after a serious medical stress.


Assuntos
Cromogranina A/sangue , Infecção Hospitalar/sangue , Ferimentos e Lesões/sangue , Adulto , Idade de Início , Feminino , Humanos , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Fragmentos de Peptídeos/sangue , Células THP-1
13.
Pflugers Arch ; 470(1): 143-154, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875377

RESUMO

The discovery in 1953 of the chromaffin granules as co-storage of catecholamines and ATP was soon followed by identification of a range of uniquely acidic proteins making up the isotonic vesicular storage complex within elements of the diffuse sympathoadrenal system. In the mid-1960s, the enzymatically inactive, major core protein, chromogranin A was shown to be exocytotically discharged from the stimulated adrenal gland in parallel with the co-stored catecholamines and ATP. A prohormone concept was introduced when one of the main storage proteins collectively named granins was identified as the insulin release inhibitory polypeptide pancreastatin. A wide range of granin-derived biologically active peptides have subsequently been identified. Both chromogranin A and chromogranin B give rise to antimicrobial peptides of relevance for combat of pathogens. While two of the chromogranin A-derived peptides, vasostatin-I and pancreastatin, are involved in modulation of calcium and glucose homeostasis, respectively, vasostatin-I and catestatin are important modulators of endothelial permeability, angiogenesis, myocardial contractility, and innate immunity. A physiological role is now evident for the full-length chromogranin A and vasostatin-I as circulating stabilizers of endothelial integrity and in protection against myocardial injury. The high circulating levels of chromogranin A and its fragments in patients suffering from various inflammatory diseases have emerged as challenges for future research and clinical applications.


Assuntos
Células Cromafins/metabolismo , Cromograninas/química , Fragmentos de Peptídeos/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Cardiotônicos/química , Cardiotônicos/farmacologia , Cromograninas/metabolismo , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Fragmentos de Peptídeos/química
14.
Sci Rep ; 7(1): 15199, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123174

RESUMO

The rise of antimicrobial resistant microorganisms constitutes an increasingly serious threat to global public health. As a consequence, the efficacy of conventional antimicrobials is rapidly declining, threatening the ability of healthcare professionals to cure common infections. Over the last two decades host defense peptides have been identified as an attractive source of new antimicrobials. In the present study, we characterized the antibacterial and mechanistic properties of D-Cateslytin (D-Ctl), a new epipeptide derived from L-Cateslytin, where all L-amino acids were replaced by D-amino acids. We demonstrated that D-Ctl emerges as a potent, safe and robust peptide antimicrobial with undetectable susceptibility to resistance. Using Escherichia coli as a model, we reveal that D-Ctl targets the bacterial cell wall leading to the permeabilization of the membrane and the death of the bacteria. Overall, D-Ctl offers many assets that make it an attractive candidate for the biopharmaceutical development of new antimicrobials either as a single therapy or as a combination therapy as D-Ctl also has the remarkable property to potentiate several antimicrobials of reference such as cefotaxime, amoxicillin and methicillin.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Cromogranina A/farmacologia , Escherichia coli/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/toxicidade , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/toxicidade , Células CACO-2 , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Cromogranina A/síntese química , Cromogranina A/toxicidade , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Firmicutes/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/toxicidade , Permeabilidade/efeitos dos fármacos , Prevotella intermedia/efeitos dos fármacos
15.
Front Immunol ; 8: 1131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28951733

RESUMO

Ulcerative colitis (UC) is characterized by a functional dysregulation of alternatively activated macrophage (AAM) and intestinal epithelial cells (IECs) homeostasis. Chromogranin-A (CHGA) secreted by neuroendocrine cells is implicated in intestinal inflammation and immune dysregulation. CHGA undergoes proteolytic processing to generate CHGA-derived peptides. Chromofungin (CHR: CHGA47-66) is a short CHGA-derived peptide encoded by CHGA Exon-IV and is involved in innate immune regulation, but the basis is poorly investigated. We investigated the expression of CHR in colonic tissue of patients with active UC and assessed the effects of the CHR in dextran sulfate sodium (DSS) colitis in mice and on macrophages and human colonic epithelial cells. We found that mRNA expression of CHR correlated positively with mRNA levels of AAM markers and gene expression of tight junction (TJ) proteins and negatively with mRNA levels of interleukin (IL)-8, IL-18, and collagen in patients with active UC. Moreover, AAM markers correlated positively with gene expression of TJ proteins and negatively with IL-8, IL-18, and collagen gene expression. Experimentally, intracolonic administration of CHR protected against DSS-induced colitis by priming macrophages into AAM, reducing colonic collagen deposition, and maintaining IECs homeostasis. This effect was associated with a significant increase of AAM markers, reduction of colonic IL-18 release and conservation of gene expression of TJ proteins. In vitro, CHR enhanced AAM polarization and increased the production of anti-inflammatory mediators. CHR-treated AAM conditioned medium increased Caco-2 cell migration, viability, proliferation, and mRNA levels of TJ proteins, and decreased oxidative stress-induced apoptosis and proinflammatory cytokines release. Direct CHR treatments had the same effect. In conclusion, CHR treatment reduces the severity of colitis and the inflammatory process via enhancing AAM functions and maintaining IECs homeostasis. CHR is involved in the pathogenesis of inflammation in experimental colitis. These findings provide insight into the mechanisms of colonic inflammation and could lead to new therapeutic strategies for UC.

16.
Biochem Pharmacol ; 145: 102-113, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827109

RESUMO

Chromogranin-A (CHGA) is a prohormone secreted by neuroendocrine cells and is a precursor of several bioactive peptides, which are implicated in different and distinctive biological and immune functions. Chromofungin (CHR: CHGA47-66) is a short peptide with antimicrobial effects and encodes from CHGA exon-IV. Inflammatory bowel disease (IBD) is characterized by alterations in the activation of pro-inflammatory pathways, pro-inflammatory macrophages (M1), and nuclear transcription factor kappa B (NF-κB) signaling leading to the perpetuation of the inflammatory process. Here, we investigated the activity of CHR (CHGA Exon-IV) in persons with active ulcerative colitis (UC) and the underlying mechanisms in dextran sulfate sodium (DSS)-colitis in regard to macrophages activation and migration. Tissue mRNA expression of CHR (CHGA Exon-IV) was down regulated in active UC compared to healthy individuals and negatively correlated with pro-inflammatory macrophages (M1) cytokines, toll-like receptors (TLR)-4, and pNF-κB activity. In DSS colitis, CHR (CHGA Exon-IV) expression was reduced, and exogenous CHR treatment decreased the severity of colitis associated with a reduction of M1 macrophages markers and pNF-κB. In vitro, CHR treatment reduced macrophages migration, decreased pro-inflammatory cytokines production and pNF-κB. Targeting CHR may represent a promising new direction in research to define new therapeutic targets and biomarkers associated with IBD.


Assuntos
Cromogranina A/metabolismo , Cromogranina A/farmacologia , Colite Ulcerativa/metabolismo , Inflamação/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , NF-kappa B/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Animais , Colite/induzido quimicamente , Sulfato de Dextrana/toxicidade , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Transdução de Sinais
17.
J Colloid Interface Sci ; 469: 184-190, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26890383

RESUMO

"Polydopamine" (PDA) is the oxidation product of dopamine and can be obtained as thin films covering the surface of all kinds of known materials and simultaneously as insoluble and useless precipitates from dopamine solutions in the presence of appropriate oxidants. The valorization of such precipitates to obtain stable suspensions of functional nanomaterials is highly desirable owing to the chemical and optical properties of PDA. We show that a vast repertoire of polyelectrolytes polycations as well as polyanions, allow to control the size of PDA particles in the 10-100 nm size range. Simultaneously to the production of smaller nanoparticles, a progressive inhibition of PDA deposition on the surface of quartz plates (as well as on the surface of the reaction vessel) is found as the concentration of the polyelectrolytes is increased in the dopamine solution. The mechanism of size control-inhibition of film deposition is investigated in the particular case of poly(allylamine) but remains not understood in the case of polyanions.

18.
Front Microbiol ; 7: 2151, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144234

RESUMO

The mammalian intestinal tract is heavily colonized with a dense, complex, and diversified microbial populations. In healthy individuals, an array of epithelial antimicrobial agents is secreted in the gut to aid intestinal homeostasis. Enterochromaffin cells (EC) in the intestinal epithelium are a major source of chromogranin A (CgA), which is a pro-hormone and can be cleaved into many bioactive peptides that include catestatin (CST). This study was carried out to evaluate the possible impact of CST on gut microbiota in vivo using a mouse model. The CST (Human CgA352-372) or normal saline was intrarectally administered in C57BL/6 male mice for 6 days and then sacrificed. Feces and colonic mucosa tissue samples were collected, DNA was extracted, the V4 region of bacterial 16S rRNA gene was amplified and subjected to MiSeq Illumina sequencing. The α-diversity was calculated using Chao 1 and ß-diversity was determined using QIIME. Differences at the genus level were determined using partial least square discriminant analysis (PLS-DA). Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) was used to predict functional capacity of bacterial community. CST treatment did not modify bacterial richness in fecal and colonic mucosa-associated microbiota; however, treatment significantly modified bacterial community composition between the groups. Also, CST-treated mice had a significantly lower relative abundance of Firmicutes and higher abundance of Bacteroidetes, observed only in fecal samples. However, at lower phylogenetic levels, PLS-DA analysis revealed that some bacterial taxa were significantly associated with the CST-treated mice in both fecal and colonic mucosa samples. In addition, differences in predicted microbial functional pathways in both fecal and colonic mucosa samples were detected. The results support the hypothesis that CST treatment modulates gut microbiota composition under non-pathophysiological conditions, however, the result of this study needs to be further validated in a larger experiment. The data may open new avenues for the development of a potential new line of antimicrobial peptides and their use as therapeutic agents to treat several inflammatory conditions of the gastrointestinal tract, such as inflammatory bowel disease (IBD), inflammatory bowel syndrome (IBS), or other health conditions.

19.
PLoS One ; 10(12): e0145143, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26659616

RESUMO

Implanted medical devices are prone to infection. Designing new strategies to reduce infection and implant rejection are an important challenge for modern medicine. To this end, in the last few years many hydrogels have been designed as matrices for antimicrobial molecules destined to fight frequent infection found in moist environments like the oral cavity. In this study, two types of original hydrogels containing the antimicrobial peptide Cateslytin have been designed. The first hydrogel is based on alginate modified with catechol moieties (AC gel). The choice of these catechol functional groups which derive from mussel's catechol originates from their strong adhesion properties on various surfaces. The second type of gel we tested is a mixture of alginate catechol and thiol-terminated Pluronic (AC/PlubisSH), a polymer derived from Pluronic, a well-known biocompatible polymer. This PlubisSH polymer has been chosen for its capacity to enhance the cohesion of the composition. These two gels offer new clinical uses, as they can be injected and jellify in a few minutes. Moreover, we show these gels strongly adhere to implant surfaces and gingiva. Once gelled, they demonstrate a high level of rheological properties and stability. In particular, the dissipative energy of the (AC/PlubisSH) gel detachment reaches a high value on gingiva (10 J.m-2) and on titanium alloys (4 J.m-2), conferring a strong mechanical barrier. Moreover, the Cateslytin peptide in hydrogels exhibited potent antimicrobial activities against P. gingivalis, where a strong inhibition of bacterial metabolic activity and viability was observed, indicating reduced virulence. Gel biocompatibility tests indicate no signs of toxicity. In conclusion, these new hydrogels could be ideal candidates in the prevention and/or management of periimplant diseases.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Alginatos/química , Ligas/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Catecóis/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromogranina A/química , Cromogranina A/farmacologia , Implantes Dentários/microbiologia , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Poloxâmero/química , Polímeros/química , Porphyromonas gingivalis/efeitos dos fármacos , Reologia
20.
Adv Healthc Mater ; 4(13): 2026-36, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26379222

RESUMO

Major problems with biomedical devices in particular implants located in nonsterile environments concern: (i) excessive immune response to the implant, (ii) development of bacterial biofilms, and (iii) yeast and fungi infections. An original multifunctional coating that addresses all these issues concomitantly is developed. A new exponentially growing polyelectrolyte multilayer film based on polyarginine (PAR) and hyaluronic acid (HA) is designed. The films have a strong inhibitory effect on the production of inflammatory cytokines released by human primary macrophage subpopulations. This could reduce potential chronic inflammatory reaction following implantation. Next, it is shown that PAR, due to its positive charges, has an antimicrobial activity in film format against Staphylococcus aureus for 24 h. In order to have a long-term antimicrobial activity, a precursor nanoscale silver coating is deposited on the surface before adding the PAR/HA films. Moreover, the PAR/HA films can be easily further functionalized by embedding antimicrobial peptides, like catestatin (CAT), a natural host defense peptide. This PAR/HA+CAT film proves to be effective as an antimicrobial coating against yeast and fungi and its cytocompatibility is also assessed. Finally, this all-in-one system constitutes an original strategy to limit inflammation and prevents bacteria, yeast, and fungi infections.


Assuntos
Anti-Infecciosos/química , Materiais Revestidos Biocompatíveis/química , Ácido Hialurônico/química , Peptídeos/química , Anti-Infecciosos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Células Cultivadas , Cromogranina A/química , Cromogranina A/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Citocinas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/farmacologia , Interferon gama/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Microscopia de Fluorescência , Nanoestruturas/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA